metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C42.234D10, (D4×Dic5)⋊30C2, (Q8×Dic5)⋊19C2, C4.4D4⋊19D5, (D5×C42)⋊10C2, D10⋊3Q8⋊32C2, (C2×D4).175D10, C20⋊2D4.13C2, (C2×Q8).138D10, C22⋊C4.74D10, C20.6Q8⋊20C2, D10.15(C4○D4), Dic5⋊4D4⋊33C2, C20.125(C4○D4), C4.38(D4⋊2D5), (C2×C20).504C23, (C4×C20).187C22, (C2×C10).224C24, D10.12D4⋊45C2, C23.46(C22×D5), Dic5.74(C4○D4), (D4×C10).157C22, C23.D10⋊41C2, C4⋊Dic5.234C22, (C22×C10).54C23, (Q8×C10).128C22, C22.245(C23×D5), C23.D5.57C22, D10⋊C4.36C22, C23.11D10⋊19C2, C5⋊9(C23.36C23), (C2×Dic5).377C23, (C4×Dic5).142C22, C10.D4.70C22, (C22×D5).228C23, (C22×Dic5).144C22, C2.80(D5×C4○D4), C10.191(C2×C4○D4), (C5×C4.4D4)⋊16C2, C2.56(C2×D4⋊2D5), (C2×C4×D5).381C22, (C2×C4).301(C22×D5), (C2×C5⋊D4).62C22, (C5×C22⋊C4).66C22, SmallGroup(320,1352)
Series: Derived ►Chief ►Lower central ►Upper central
Subgroups: 734 in 234 conjugacy classes, 99 normal (43 characteristic)
C1, C2 [×3], C2 [×4], C4 [×2], C4 [×12], C22, C22 [×10], C5, C2×C4 [×3], C2×C4 [×2], C2×C4 [×17], D4 [×6], Q8 [×2], C23 [×2], C23, D5 [×2], C10 [×3], C10 [×2], C42, C42 [×5], C22⋊C4 [×4], C22⋊C4 [×6], C4⋊C4 [×10], C22×C4 [×5], C2×D4, C2×D4 [×2], C2×Q8, Dic5 [×2], Dic5 [×6], C20 [×2], C20 [×4], D10 [×2], D10 [×2], C2×C10, C2×C10 [×6], C2×C42, C42⋊C2 [×2], C4×D4 [×3], C4×Q8, C4⋊D4, C22⋊Q8, C22.D4 [×2], C4.4D4, C42.C2, C42⋊2C2 [×2], C4×D5 [×6], C2×Dic5 [×3], C2×Dic5 [×4], C2×Dic5 [×4], C5⋊D4 [×4], C2×C20 [×3], C2×C20 [×2], C5×D4 [×2], C5×Q8 [×2], C22×D5, C22×C10 [×2], C23.36C23, C4×Dic5 [×3], C4×Dic5 [×2], C10.D4 [×6], C4⋊Dic5 [×2], C4⋊Dic5 [×2], D10⋊C4 [×2], C23.D5 [×4], C4×C20, C5×C22⋊C4 [×4], C2×C4×D5 [×3], C22×Dic5 [×2], C2×C5⋊D4 [×2], D4×C10, Q8×C10, C20.6Q8, D5×C42, C23.11D10 [×2], C23.D10 [×2], Dic5⋊4D4 [×2], D10.12D4 [×2], D4×Dic5, C20⋊2D4, Q8×Dic5, D10⋊3Q8, C5×C4.4D4, C42.234D10
Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], D5, C4○D4 [×6], C24, D10 [×7], C2×C4○D4 [×3], C22×D5 [×7], C23.36C23, D4⋊2D5 [×2], C23×D5, C2×D4⋊2D5, D5×C4○D4 [×2], C42.234D10
Generators and relations
G = < a,b,c,d | a4=b4=c10=1, d2=a2, ab=ba, cac-1=dad-1=ab2, cbc-1=dbd-1=a2b, dcd-1=a2c-1 >
(1 135 33 104)(2 114 34 88)(3 137 35 106)(4 116 36 90)(5 139 37 108)(6 118 38 82)(7 131 39 110)(8 120 40 84)(9 133 31 102)(10 112 32 86)(11 115 47 89)(12 138 48 107)(13 117 49 81)(14 140 50 109)(15 119 41 83)(16 132 42 101)(17 111 43 85)(18 134 44 103)(19 113 45 87)(20 136 46 105)(21 95 143 55)(22 79 144 64)(23 97 145 57)(24 71 146 66)(25 99 147 59)(26 73 148 68)(27 91 149 51)(28 75 150 70)(29 93 141 53)(30 77 142 62)(52 155 92 122)(54 157 94 124)(56 159 96 126)(58 151 98 128)(60 153 100 130)(61 156 76 123)(63 158 78 125)(65 160 80 127)(67 152 72 129)(69 154 74 121)
(1 100 19 73)(2 51 20 69)(3 92 11 75)(4 53 12 61)(5 94 13 77)(6 55 14 63)(7 96 15 79)(8 57 16 65)(9 98 17 71)(10 59 18 67)(21 140 158 118)(22 110 159 83)(23 132 160 120)(24 102 151 85)(25 134 152 112)(26 104 153 87)(27 136 154 114)(28 106 155 89)(29 138 156 116)(30 108 157 81)(31 58 43 66)(32 99 44 72)(33 60 45 68)(34 91 46 74)(35 52 47 70)(36 93 48 76)(37 54 49 62)(38 95 50 78)(39 56 41 64)(40 97 42 80)(82 143 109 125)(84 145 101 127)(86 147 103 129)(88 149 105 121)(90 141 107 123)(111 146 133 128)(113 148 135 130)(115 150 137 122)(117 142 139 124)(119 144 131 126)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 10 33 32)(2 31 34 9)(3 8 35 40)(4 39 36 7)(5 6 37 38)(11 16 47 42)(12 41 48 15)(13 14 49 50)(17 20 43 46)(18 45 44 19)(21 142 143 30)(22 29 144 141)(23 150 145 28)(24 27 146 149)(25 148 147 26)(51 98 91 58)(52 57 92 97)(53 96 93 56)(54 55 94 95)(59 100 99 60)(61 79 76 64)(62 63 77 78)(65 75 80 70)(66 69 71 74)(67 73 72 68)(81 82 117 118)(83 90 119 116)(84 115 120 89)(85 88 111 114)(86 113 112 87)(101 137 132 106)(102 105 133 136)(103 135 134 104)(107 131 138 110)(108 109 139 140)(121 151 154 128)(122 127 155 160)(123 159 156 126)(124 125 157 158)(129 153 152 130)
G:=sub<Sym(160)| (1,135,33,104)(2,114,34,88)(3,137,35,106)(4,116,36,90)(5,139,37,108)(6,118,38,82)(7,131,39,110)(8,120,40,84)(9,133,31,102)(10,112,32,86)(11,115,47,89)(12,138,48,107)(13,117,49,81)(14,140,50,109)(15,119,41,83)(16,132,42,101)(17,111,43,85)(18,134,44,103)(19,113,45,87)(20,136,46,105)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,19,73)(2,51,20,69)(3,92,11,75)(4,53,12,61)(5,94,13,77)(6,55,14,63)(7,96,15,79)(8,57,16,65)(9,98,17,71)(10,59,18,67)(21,140,158,118)(22,110,159,83)(23,132,160,120)(24,102,151,85)(25,134,152,112)(26,104,153,87)(27,136,154,114)(28,106,155,89)(29,138,156,116)(30,108,157,81)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,143,109,125)(84,145,101,127)(86,147,103,129)(88,149,105,121)(90,141,107,123)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,33,32)(2,31,34,9)(3,8,35,40)(4,39,36,7)(5,6,37,38)(11,16,47,42)(12,41,48,15)(13,14,49,50)(17,20,43,46)(18,45,44,19)(21,142,143,30)(22,29,144,141)(23,150,145,28)(24,27,146,149)(25,148,147,26)(51,98,91,58)(52,57,92,97)(53,96,93,56)(54,55,94,95)(59,100,99,60)(61,79,76,64)(62,63,77,78)(65,75,80,70)(66,69,71,74)(67,73,72,68)(81,82,117,118)(83,90,119,116)(84,115,120,89)(85,88,111,114)(86,113,112,87)(101,137,132,106)(102,105,133,136)(103,135,134,104)(107,131,138,110)(108,109,139,140)(121,151,154,128)(122,127,155,160)(123,159,156,126)(124,125,157,158)(129,153,152,130)>;
G:=Group( (1,135,33,104)(2,114,34,88)(3,137,35,106)(4,116,36,90)(5,139,37,108)(6,118,38,82)(7,131,39,110)(8,120,40,84)(9,133,31,102)(10,112,32,86)(11,115,47,89)(12,138,48,107)(13,117,49,81)(14,140,50,109)(15,119,41,83)(16,132,42,101)(17,111,43,85)(18,134,44,103)(19,113,45,87)(20,136,46,105)(21,95,143,55)(22,79,144,64)(23,97,145,57)(24,71,146,66)(25,99,147,59)(26,73,148,68)(27,91,149,51)(28,75,150,70)(29,93,141,53)(30,77,142,62)(52,155,92,122)(54,157,94,124)(56,159,96,126)(58,151,98,128)(60,153,100,130)(61,156,76,123)(63,158,78,125)(65,160,80,127)(67,152,72,129)(69,154,74,121), (1,100,19,73)(2,51,20,69)(3,92,11,75)(4,53,12,61)(5,94,13,77)(6,55,14,63)(7,96,15,79)(8,57,16,65)(9,98,17,71)(10,59,18,67)(21,140,158,118)(22,110,159,83)(23,132,160,120)(24,102,151,85)(25,134,152,112)(26,104,153,87)(27,136,154,114)(28,106,155,89)(29,138,156,116)(30,108,157,81)(31,58,43,66)(32,99,44,72)(33,60,45,68)(34,91,46,74)(35,52,47,70)(36,93,48,76)(37,54,49,62)(38,95,50,78)(39,56,41,64)(40,97,42,80)(82,143,109,125)(84,145,101,127)(86,147,103,129)(88,149,105,121)(90,141,107,123)(111,146,133,128)(113,148,135,130)(115,150,137,122)(117,142,139,124)(119,144,131,126), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,10,33,32)(2,31,34,9)(3,8,35,40)(4,39,36,7)(5,6,37,38)(11,16,47,42)(12,41,48,15)(13,14,49,50)(17,20,43,46)(18,45,44,19)(21,142,143,30)(22,29,144,141)(23,150,145,28)(24,27,146,149)(25,148,147,26)(51,98,91,58)(52,57,92,97)(53,96,93,56)(54,55,94,95)(59,100,99,60)(61,79,76,64)(62,63,77,78)(65,75,80,70)(66,69,71,74)(67,73,72,68)(81,82,117,118)(83,90,119,116)(84,115,120,89)(85,88,111,114)(86,113,112,87)(101,137,132,106)(102,105,133,136)(103,135,134,104)(107,131,138,110)(108,109,139,140)(121,151,154,128)(122,127,155,160)(123,159,156,126)(124,125,157,158)(129,153,152,130) );
G=PermutationGroup([(1,135,33,104),(2,114,34,88),(3,137,35,106),(4,116,36,90),(5,139,37,108),(6,118,38,82),(7,131,39,110),(8,120,40,84),(9,133,31,102),(10,112,32,86),(11,115,47,89),(12,138,48,107),(13,117,49,81),(14,140,50,109),(15,119,41,83),(16,132,42,101),(17,111,43,85),(18,134,44,103),(19,113,45,87),(20,136,46,105),(21,95,143,55),(22,79,144,64),(23,97,145,57),(24,71,146,66),(25,99,147,59),(26,73,148,68),(27,91,149,51),(28,75,150,70),(29,93,141,53),(30,77,142,62),(52,155,92,122),(54,157,94,124),(56,159,96,126),(58,151,98,128),(60,153,100,130),(61,156,76,123),(63,158,78,125),(65,160,80,127),(67,152,72,129),(69,154,74,121)], [(1,100,19,73),(2,51,20,69),(3,92,11,75),(4,53,12,61),(5,94,13,77),(6,55,14,63),(7,96,15,79),(8,57,16,65),(9,98,17,71),(10,59,18,67),(21,140,158,118),(22,110,159,83),(23,132,160,120),(24,102,151,85),(25,134,152,112),(26,104,153,87),(27,136,154,114),(28,106,155,89),(29,138,156,116),(30,108,157,81),(31,58,43,66),(32,99,44,72),(33,60,45,68),(34,91,46,74),(35,52,47,70),(36,93,48,76),(37,54,49,62),(38,95,50,78),(39,56,41,64),(40,97,42,80),(82,143,109,125),(84,145,101,127),(86,147,103,129),(88,149,105,121),(90,141,107,123),(111,146,133,128),(113,148,135,130),(115,150,137,122),(117,142,139,124),(119,144,131,126)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,10,33,32),(2,31,34,9),(3,8,35,40),(4,39,36,7),(5,6,37,38),(11,16,47,42),(12,41,48,15),(13,14,49,50),(17,20,43,46),(18,45,44,19),(21,142,143,30),(22,29,144,141),(23,150,145,28),(24,27,146,149),(25,148,147,26),(51,98,91,58),(52,57,92,97),(53,96,93,56),(54,55,94,95),(59,100,99,60),(61,79,76,64),(62,63,77,78),(65,75,80,70),(66,69,71,74),(67,73,72,68),(81,82,117,118),(83,90,119,116),(84,115,120,89),(85,88,111,114),(86,113,112,87),(101,137,132,106),(102,105,133,136),(103,135,134,104),(107,131,138,110),(108,109,139,140),(121,151,154,128),(122,127,155,160),(123,159,156,126),(124,125,157,158),(129,153,152,130)])
Matrix representation ►G ⊆ GL6(𝔽41)
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 0 | 1 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 0 | 32 | 9 |
| 40 | 0 | 0 | 0 | 0 | 0 |
| 0 | 40 | 0 | 0 | 0 | 0 |
| 0 | 0 | 9 | 0 | 0 | 0 |
| 0 | 0 | 0 | 9 | 0 | 0 |
| 0 | 0 | 0 | 0 | 32 | 0 |
| 0 | 0 | 0 | 0 | 32 | 9 |
| 6 | 6 | 0 | 0 | 0 | 0 |
| 35 | 1 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 1 | 39 |
| 0 | 0 | 0 | 0 | 0 | 40 |
| 6 | 6 | 0 | 0 | 0 | 0 |
| 1 | 35 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 0 |
| 0 | 0 | 0 | 40 | 0 | 0 |
| 0 | 0 | 0 | 0 | 40 | 2 |
| 0 | 0 | 0 | 0 | 40 | 1 |
G:=sub<GL(6,GF(41))| [40,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,32,32,0,0,0,0,0,9],[40,0,0,0,0,0,0,40,0,0,0,0,0,0,9,0,0,0,0,0,0,9,0,0,0,0,0,0,32,32,0,0,0,0,0,9],[6,35,0,0,0,0,6,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,39,40],[6,1,0,0,0,0,6,35,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,40,0,0,0,0,2,1] >;
56 conjugacy classes
| class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | ··· | 4F | 4G | 4H | 4I | 4J | 4K | 4L | 4M | 4N | 4O | 4P | 4Q | 4R | 4S | 4T | 5A | 5B | 10A | ··· | 10F | 10G | 10H | 10I | 10J | 20A | ··· | 20L | 20M | 20N | 20O | 20P |
| order | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 5 | 5 | 10 | ··· | 10 | 10 | 10 | 10 | 10 | 20 | ··· | 20 | 20 | 20 | 20 | 20 |
| size | 1 | 1 | 1 | 1 | 4 | 4 | 10 | 10 | 2 | ··· | 2 | 4 | 4 | 5 | 5 | 5 | 5 | 10 | 10 | 10 | 10 | 20 | 20 | 20 | 20 | 2 | 2 | 2 | ··· | 2 | 8 | 8 | 8 | 8 | 4 | ··· | 4 | 8 | 8 | 8 | 8 |
56 irreducible representations
| dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
| type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | - | ||||
| image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D5 | C4○D4 | C4○D4 | C4○D4 | D10 | D10 | D10 | D10 | D4⋊2D5 | D5×C4○D4 |
| kernel | C42.234D10 | C20.6Q8 | D5×C42 | C23.11D10 | C23.D10 | Dic5⋊4D4 | D10.12D4 | D4×Dic5 | C20⋊2D4 | Q8×Dic5 | D10⋊3Q8 | C5×C4.4D4 | C4.4D4 | Dic5 | C20 | D10 | C42 | C22⋊C4 | C2×D4 | C2×Q8 | C4 | C2 |
| # reps | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 1 | 2 | 4 | 4 | 4 | 2 | 8 | 2 | 2 | 4 | 8 |
In GAP, Magma, Sage, TeX
C_4^2._{234}D_{10} % in TeX
G:=Group("C4^2.234D10"); // GroupNames label
G:=SmallGroup(320,1352);
// by ID
G=gap.SmallGroup(320,1352);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,232,100,1123,346,297,12550]);
// Polycyclic
G:=Group<a,b,c,d|a^4=b^4=c^10=1,d^2=a^2,a*b=b*a,c*a*c^-1=d*a*d^-1=a*b^2,c*b*c^-1=d*b*d^-1=a^2*b,d*c*d^-1=a^2*c^-1>;
// generators/relations